Question 2.5: Additional Answer Options

2021 - November - Paper 1 - Question 2

2.1

 

A body will remain in its state of rest or motion at constant velocity unless a non-zero resultant/net force/unbalanced force acts on it. checkcheck

OR

A body will remain in its state of rest or uniform motion in a straight line unless a (non-zero) resultant/net/unbalanced force acts on it. checkcheck

2 marks

(2 x 1 mark)

 

2.2

 

OR

 

OR

 

wcheck Fg / Fw / weight/mg/196 N / gravitational force
Fcheck FA / Applied force
fkcheck

(kinetic) Friction /Ff / f /18 N / Fw / fw

Ncheck FN / Normal / 169,74 N

light bulbIt is very important that you draw the free body diagram on an incline, therefore, the forces other than gravity must act parallel and perpendicularly to the incline.

4 marks

(4 x 1 mark)

Marking criteria:

  • Mark awarded for label and arrow, but penalise only once if arrows are omitted.
  • Do not penalise for the length of arrows, the drawing is not to scale.
  • For any other additional force(s) deduct 1 mark.
  • If force(s) do not make contact with the body deduct 1 mark.

 

2.3

 

light bulb How to approach this question:

  • The object is moving at a constant velocity, therefore, it must have an acceleration of 0 m·s-2.

Option 1:

\left.\begin{array}{l}F_{net}=ma\\ F+f_{k}+w_{\|l}=ma\\ F+\left(-f_{k}\right)+\left(-w_{\|}\right)=ma\\ F-\left(f_{k}+w_{\|}\right)=ma\end{array}\right\}Anyone check

F-\left[18+(20)(9,8)\left(\sin30^{\circ}\right)\right]=0 checkcheck

F=116\mathrm{~N} check

  • Remember, the frictional force always acts in the opposite direction to the direction of motion.

OR

Option 2:

  • Using the work-energy theorem, since the block travels at a constant velocity the change in kinetic energy is zero.

W_{net}=\Delta E_{k} check

F\Delta x\cos0^{\circ}+f\Delta x\cos180^{\circ}+w\Delta x\cos120^{\circ}=0 checkcheck

F\Delta x=18\Delta x+(20)(9,8)\Delta x(0,5)

F=116\mathrm{~N} check

4 marks

(4 x 1 mark)

 

2.4

 

116 N OR f + w||check

Down the incline/opposite to the direction of motion. check

light bulb The resultant force when the force F is removed, it will be equal to the sum of the weight and the frictional force acting down the incline.

2 marks

(2 x 1 mark)

2.5

 

light bulb How to approach this question:

  • If down the slope is taken as the positive direction.

     

Option 1:

Part 1:

F_{net}=ma

116=20a check

a=5,80\mathrm{~m}\cdot\mathrm{s}^{-2}

Part 2:

  • The initial velocity is 2 m·s-1up the slope.

v_{f}=v_{i}+a\Delta t

0=-2+(5,8)\Delta t

\Delta t=0,34\mathrm{~s}

OR

F_{net}\Delta t=m\left(v_{f}-v_{i}\right)

(116)\Delta t=(20)(0-(-2))

\Delta\mathrm{t}=0,34\mathrm{~s}

OR

v_{f}=v_{i}+a\Delta t

0=-2+(5,8)\Delta t

\Delta t=0,34\mathrm{~s}

OR

\mathrm{F}_{\mathrm{net}}\Delta\mathrm{t}=\mathrm{m}\left(\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}\right)

(116)\Delta t=(20)(0-(-2))

\Delta t=0,34\mathrm{~s}

Part 3:

  • Since the direction of down the slope is positive the displacement will be negative.

\Delta\mathrm{x}=\left(\frac{\mathrm{v}_{\mathrm{i}}+\mathrm{v}_{\mathrm{f}}}{2}\right)\Delta\mathrm{t} check

=\left(\frac{-2+0}{2}\right)0,34 check

=-0,34\mathrm{~m}

Distance=0,34\mathrm{~m} check (This part doesn't use Part 2)

OR

\Delta x=v_{i}\Delta t+1/2a\Delta t^2 check

=(-2)(0,34)+1/2(5,8)(0,34)^2 check

=-0,34\mathrm{~m}

\text{ Distance }=0,34\mathrm{m} check

OR

\Delta\mathrm{x}=\left(\frac{\mathrm{v}_{\mathrm{i}}+\mathrm{v}_{\mathrm{f}}}{2}\right)\Delta\mathrm{t} check

=\left(\frac{-2+0}{2}\right)0,34 check

=-0,34\mathrm{~m}

Distance=0,34\mathrm{~m} check

There are more ways to answer this question. To view other options, click here.

4 marks

(4 x 1 mark)

Or

Option 2

\left.\begin{array}{l}W_{\text{net }}=\Delta E_{K}\\ F_{\text{net }}\Delta x\cos\theta=1/2m\left(v_{f}^2-v_{i}^2\right)\end{array}\right\}Anyone

(116)\Delta x\cos180^{\circ}=1/2(20)\left(0^2-2^2\right)

\Delta\mathrm{x}=0,34\mathrm{~m}


Or

Option 3

\left.\begin{array}{l}W_{\text{net }}=\Delta E_{K}\\ W_{f}+W_{wll}=1/2mv_{f}^2-1/2mv_{i}^2\\ f\Delta x\cos\theta+\left(mg\sin30^{\circ}\right)\Delta x\cos\theta=1/2m\left(v_{f}^2-v_{i}^2\right)\end{array}\right\}Anyone

(18)\Delta x\cos180^{\circ}+(20)(9.8)\sin30^{\circ}\Delta x\cos180^{\circ}=y_2(20)\left(0^{\circ}-2^2\right)

\Delta\mathrm{x}=0,34\mathrm{~m}


Or

Option 4

\left.\begin{array}{l}W_{\text{net }}=\Delta E_{K}\\ W_{f}+W_{w}=1/2mv_{f}^2-1/2mv_{i}^2\\ f\Delta x\cos\theta+mg\Delta x\cos120^{\circ}=1/2m\left(v_{f}^2-v_{i}^2\right)\end{array}\right\}Anyone

(18)\Delta x\cos180^{\circ}+(20)(9,8)\Delta x\cos120^{\circ}=1/2(20)\left(0^2-2^2\right)

\Delta x=0,34\mathrm{~m}


Or

Option 5

\left.\begin{array}{l}W_{nc}=\Delta E_{p}+\Delta E_{k}\\ f\Delta x\cos\theta=mg\left(h_{f}-h_{i}\right)+1/2m\left(v_{f}^2-v_{i}^2\right)\end{array}\right\}Anyone

18\Delta x\cos180^{\circ}=20(9.8)\Delta x+1/2(20)\left(0^2-2^2\right)

-18\Delta x=196\Delta x\sin30^{\circ}-40

\Delta x=0,34\mathrm{~m}

Related subjects & topics
Explore similar posts in our community