Question 3.2.4: Additional Answer Options

2020 - November - Paper 1 - Question 3

 

3.1

 

(Motion of an object) under the influence of gravity (weight) only.checkcheck

OR

(Motion in which) the only force acting on the object is gravity (weight).checkcheck

light bulbFree fall and vertical projectile motion both describe the motion of an object when the only force acting on the object is the gravitational force.

If your response focuses on the object rather than its motion, you will lose your mark.

2 marks

(1 x 2 marks)

3.2.1

 

Δt = 0,67 – 0,64 = 0,03 scheckcheck

light bulb The time that the ball is in contact with the floor, is the time when the position is zero as shown in the graph below:

2 marks

(2 x 1 mark)

3.2.2

 

Option 1:

\Delta t=\frac{(1,90-0,67)}{2}check

=0,62\mathrm{s}(0,615\mathrm{s})check

There are more ways to answer this question. To view other options, click here.

light bulbThe time that it takes for the ball to reach the maximum height from its projection is equal to the time it takes for the ball to return from that height back to the point of projection.

Therefore, we can divide the time by 2.

 

2 marks

(2 x 1 mark)

3.2.3

 

Option 1:

Upwards as positive:

v_{f}=v_{i}+a\Delta t (1)check

0=v_{i}+(-9,8)(0,62) (2)check

v_{i}=6,08\mathrm{~m}\cdot\mathrm{s}^{-1}\left(6,076\mathrm{~m}\cdot\mathrm{s}^{-1}\right) (3)check

OR

Downwards as positive:

v_{f}=v_{i}+a\Delta t (1)check

0=v_{j}+(9,8)(0,62) (2)check

v_{i}=-6,08

\therefore6,08\mathrm{~m}\cdot\mathrm{s}^{-1}\left(6,076\mathrm{~m}\cdot\mathrm{s}^{-1}\right) (1)check

There are more ways to answer this question. To view other options, click here.

light bulb The ball must move in the opposite direction to the direction of gravity. One value must be positive and the other must be negative.

3 marks

(3 x 1 mark)

Marking criteria:

  • (1) Any appropriate formula. check
  • (2) Correct substitution.check
  • (3) Final answer: 5,94 to 6,08 m·s-1.check

3.2.4

 

This question provides multiple parts with multiple alternative options

Part 1:

Option 1:

Downwards as positive:

\mathrm{v}_{\mathrm{f}}^2=\mathrm{v}_{\mathrm{i}}^2+2\mathrm{a}\Delta\mathrm{y} (1) check

0=v_{i}^2+2(9,8)(-1,2)(2)check

\mathrm{v}_{\mathrm{i}}=-4,85\mathrm{~m}\cdot\mathrm{s}^{-1}

OR

Upwards as positive:

v_{f}^2=v_{i}^2+2a\Delta y (1)check

0=v_{i}^2+2(-9,8)(1,2) (2) check

\mathrm{v}_{\mathrm{i}}=4,85\mathrm{~m}\cdot\mathrm{s}^{-1}

Part 2:

Option 1:

Upwards as positive:

\Delta y=v_{i}\Delta t+1/2a\Delta t^2 (3) check

1.2=(4.85)\Delta t+1/2(-9.8)\Delta t^2 (4) check

\Delta t=0,4898\mathrm{~s}/0,5\mathrm{~s}

t=1,97+2(0,4898) (5) check

=2,95\mathrm{~s}/2,97\mathrm{~s} (6) check

OR

\Delta y=v_{i}\Delta t+1/2a\Delta t^2 (3) check

0=(4,85)\Delta t+1/2(-9,8)\Delta t^2 (4)check

\Delta\mathrm{t}=0,9898\mathrm{~s}(\text{ or }\Delta\mathrm{t}=0)

t=1,97+0,9898=2,96s (5 + 6) checkcheck

OR

Downwards as positive:

\Delta\mathrm{y}=\mathrm{v}_{\mathrm{i}}\Delta\mathrm{t}+1/2\mathrm{a}\Delta\mathrm{t}^2 (3) check

1,2=(-4,85)\Delta t+1/2(9,8)\Delta t^2 (4) check

\Delta\mathrm{t}=0,4898\mathrm{~s}/0,5\mathrm{~s}

t=1,97+2(0,4898) (5) check

=2,95\mathrm{~s}/2,97\mathrm{~s} (6) check

light bulb Each mark can only be awarded once.

There are more ways to answer this question. To view other options, click here.

6 marks

(6 x 1 mark)

Option 1 / 2 / 3 / 4 marking criteria:

Calculating initial velocity:

  • (1) Appropriate formula.check
  • (2) Substitution.check

Calculating Δt:

  • (3) Appropriate formula.check
  • (4) Substitution.check
  • (5) 1,97 s + Δt.check
  • (6) Final answer: 2,95 – 2,97 s.check

Marking criteria for option 1/2/3/4:

Calculating initial velocity:

  • (1) Appropriate formula.
  • (2) Substitution.

Calculating Δt:

  • (3) Appropriate formula.
  • (4) Substitution.
  • (5) 1,97 s + Δt.
  • (6) Final answer: 2,95 – 2,97 s.

Option 5 marking criteria:

  • (1) Formula.
  • (2) Substitution: Δy = 1,2.
  • (3) Substitution: 0 + 1⁄2(9,8) Δt2.
  • (4) 1,97 s +.
  • (5) 2 Δt.
  • (6) Final answer: 2,95 - 2,97 s.

Part 1

Option 2

\left.\begin{array}{l}\left(E_{\text{mechanical }}\right)_{\text{top }}=\left(E_{\text{mechanical }}\right)_{\text{bottom}}\\ \left(E_{p}+E_{k}\right)_{\text{top }}=\left(E_{p}+E_{k}\right)_{\text{bottom}}\end{array}\right\}Anyone (1)

\left(mgh+1/2mv^2\right)_{\text{top }}=\left(mgh+1/2mv^2\right)_{\text{bottom}}

(9,8)(1,2)+0=0+(1/2)v^2 (2)

\mathrm{v}_{\mathrm{i}}=4,85\mathrm{~m}\cdot\mathrm{s}^{-1}\text{ upwards }


Or

Option 3

\left.\begin{array}{l}\mathrm{W}_{\mathrm{nc}}=\Delta\mathrm{E}_{\mathrm{p}}+\Delta\mathrm{E}_{\mathrm{k}}\\ 0=(0-\mathrm{mgh})+1/2\mathrm{m}\left(\mathrm{v}_{\mathrm{f}}^2-\mathrm{v}_{\mathrm{i}}^2\right)\end{array}\right\}Anyone (1)

0=-(9,8)(1,2)+1/2v_{i}^2 (2)

\mathrm{v}_{\mathrm{i}}=4,85\mathrm{~m}\cdot\mathrm{s}^{-1}\text{ upwards }


Or

Option 4

\left.\begin{array}{l}W_{\text{net }}=\Delta E_{k}\\ w\Delta x\cos180^{\circ}=1/2m\left(v_{f}^2-v_{j}^2\right)\end{array}\right\}Anyone (1)

(9,8)(1,2)\cos180^{\circ}=1/2\mathrm{~V}_{i}^2 (2)

\mathrm{v}_{\mathrm{i}}=-4,85\mathrm{~m}\cdot\mathrm{s}^{-1}


Part 2

Upwards as positive:

v_{f}=v_{i}+a\Delta t (3)

0=4,85+(-9,8)\Delta t (4)

\Delta\mathrm{t}=0,4949\mathrm{~s}

\Delta t=1,97+(2)(0,4949) (5)

=2,96\mathrm{~s} (6)


Or

\Delta\mathrm{y}=\left(\frac{\mathrm{v}_{\mathrm{i}}+\mathrm{v}_{\mathrm{f}}}{2}\right)\Delta\mathrm{t} (3)

1,2=\left(\frac{0+4,85}{2}\right)\Delta\mathrm{t} (4)

\Delta\mathrm{t}=0,4948\mathrm{s}

\Delta t_{\text{total }}=2(0,4948)=0,99\mathrm{~s}

\Delta t=1,97+0,99=2,96\mathrm{s}(5 + 6)


Or

Downwards as positive:

\Delta y=v_{i}\Delta t+1/2a\Delta t^2 (3)

0=(4,85)\Delta t+1/2(9,8)\Delta t^2 (4)

\Delta\mathrm{t}=0,9898\mathrm{~s}\quad(\text{ or }\Delta\mathrm{t}=0)

t=1,97+0,9898=2,96\mathrm{s} (5 + 6)


Or

v_{f}=v_{i}+a\Delta t (3)

-4,85=4,85+(-9,8)\Delta t (4)

\Delta\mathrm{t}=0,9898\mathrm{~s}

\Delta\mathrm{t}=1,97+0,9898=2,96\mathrm{s} (5 + 6)


Or

Option 5

Downwards as positive:

\Delta y=v_{i}\Delta t+1/2a\Delta t^2 (1)

1,2=0+1/2(9,8)\Delta t^2 (2 + 3)

\Delta\mathrm{t}=0,49\mathrm{~s}

t=1,97+2(0,49) (4 + 5)

=2,96\mathrm{~s} (6)


Or

Upwards as positive:

\Delta y=v_{i}\Delta t+1/2a\Delta t^2 (1)

-1,2=0+1/2(-9,8)\Delta t^2 (2 + 3)

\Delta\mathrm{t}=0,49\mathrm{~s}

t=1,97+2(0,49) (4 + 5)

=2,96\mathrm{~s} (6)

Related subjects & topics
Explore similar posts in our community