Additional Answer Options: 7.2.3

2023 - May/June - Paper 2 - Question 7

7.1.1

 

  • A substance whose aqueous solution contains ions.checkcheck
  • A substance that dissolves in water to give a solution that conducts electricity.checkcheck
  • A substance that forms ions in water/forms ions when molten.checkcheck

light bulb Tips: 

  • It is essential that your answer has the idea that the solution contains ions that can move unless it is mentioned that an ionic substance is molten or that it forms in water/is aqueous.
  • Either point will be awarded the marks.

2 marks

(1 x 2 marks)

7.1.2

 

Acheck

H2SO4 is diprotic/donates more than one mole of H+ ions per mole of acid (and both acids are of the same concentration)/H2SO4 has a higher Ka value.check

Or

It ionises to produce more than one mole of protons/H+ ions for each mole of H2SO4/ H2SO4 has a higher Ka value.check

light bulbTips: 

  • The bulb is the brightest in the solution which has the highest concentration of ions.
  • In this case, both HNO3 and H2SO4 are strong acids and will ionise completely in the solution to generate a high concentration of ions. H2SO4 produces more ions than HNO3 because it is diprotic and produces three ions for every molecule of HNO3 that ionises.
  • Remember to only refer to A and B.

2 marks

(2 x 1 mark)

7.1.3

 

Bcheck

Stronger acid/ionises completely (and both acids are of the same concentration)/ HNO3 has a higher Ka value.check

Or

CH3COOH/C is a weaker acid/ionises incompletely.check

light bulb Tips: 

  • The bulb is the brightest in the solution with the highest concentration of ions.
  • HNO3 is a strong acid, therefore, it will ionise completely to generate a higher concentration of hydronium ions in the solution.
  • Both the H3O+ ions and the NO3- ions that form, will conduct electricity.

2 marks

(2 x 1 mark)

7.2.1

 

light bulb How to approach this question: 

  • The equation in option one can only be used when the reaction is neutralized.
  • The na and nb refer to the stoichiometric coefficients of the acids and bases in the balanced equation.

Option 1

\frac{c_{a}V_{a}}{c_{b}V_{b}}=\frac{n_{a}}{n_{b}}

 

\frac{c_{a}(19,5)}{(0,04)(25)}=\frac21 (1 + 2)checkcheck

\mathrm{C}_{\mathrm{a}}=0,10\mathrm{mol}\cdot\mathrm{dm}^{-3}(0,103) (3)check

  • The equation above is one of the only equations where you can leave volumes in cm3 or convert them to dm3 without changing the answer.

Or

Option 2

\mathrm{n}\left(\mathrm{Na}_2\mathrm{CO}_3\right)=\mathrm{cV}

=0,04\times0,025 (1)check

=0,001\mathrm{~mol}

n(\mathrm{HCl})=2\mathrm{n}\left(\mathrm{Na}_2\mathrm{CO}_3\right)

=0,002\mathrm{~mol}

[\mathrm{HCl}]=\frac{\mathrm{n}}{\mathrm{V}}

=\frac{0,002}{0,0195} (2)check

=0,10\mathrm{mol}\cdot\mathrm{dm}^{-3}(0,103) (3)check

3 marks

(3 x 1 mark)

Marking criteria:

  • (1) Substitute 0,04 mol∙dm-3 and 25 x 10-3 dm3 (25 cm3) and 19,5 x 10-3 dm3 (19,5 cm3)check
  • (2) Use mol ratio: n(Na2CO3) : n(HCℓ) = 1:2check
  • (3) Final answer: 0,10 to 0,103 mol·dm-3check

 

7.2.2

 

Greater thancheck

The few drops of water will dilute the HCℓ, therefore greater volume of acid will be needed to neutralise the base.check

light bulb Tips:

  • If there are drops of water in the burette, it will dilute the HCℓ which means that a greater volume of HCℓ will be needed to reach the same number of moles required for the endpoint.
  • If drops of water are left in the conical flask before the Na2CO3 is added, this will not have any impact on the titration as the number of moles of Na2CO3 pipetted into the conical flask will remain the same.

2 marks

(2 x 1 mark)

7.2.3

 

light bulb How to approach this question:

  • First, calculate the number of moles in the 18,7 cm3 of 0,10 mol·dm-3 solution.
  • If you got the answer to question 7.2.1 wrong, you can still be awarded marks in this question for substituting correctly.

Option 1

n(HCl)=cV

=(0,1)\left(18,7\times10^{-3}\right)check

=1,87\times10^{-3}\mathrm{~mol}

  • Using the balanced equation, NH3 (aq) + HCℓ(aq) → NH4+ (aq)+ Cℓ- (aq), determine the mol ratio of NH3 to HCℓ.

\mathrm{n}\left(\mathrm{NH}_3\right)_{\text{reacted}}=\mathrm{n}(\mathrm{HCl})_{\text{reacted }}

=1,87\times10^{-3}\mathrm{~mol}check

\mathrm{n}\left(\mathrm{NH}_3\right)\text{ in }22\mathrm{~cm}^3=1,87\times10^{-3}\mathrm{~mol}

  • Using a ratio, determine the number of moles in the 250 cm3 volumetric flask.

\mathrm{n}\left(\mathrm{NH}_3\right)\text{ in }250\mathrm{cm}^3=\frac{\left(1,87\times10^{-3}\right)(250)}{22^{}}checkcheck

=0,021\mathrm{~mol}

\left(2,13\times10^{-2}\right)

\mathrm{n}\left(\mathrm{NH}_3\right)\text{ in initial }20\mathrm{~cm}^3=0,021\mathrm{~mol}

  • Now that you know the number of moles in the volumetric flask, use the molar mass of ammonia to determine the mass of ammonia in 1dm3 of ChemClean.

\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}

0,021=\frac{m}{17}check

\mathrm{m}\left(\mathrm{NH}_3\right)=0,357\mathrm{~g}\text{ in }20\mathrm{~cm}^3

m\left(\mathrm{NH}_3\right)=\frac{(0,357)(1000)}{20}check

=17,85\mathrm{g}(18,06)check

There are more ways to answer this question. To view other options, click here.

7 marks

(7 x 1 mark)

Marking criteria:

  • Substitute 0,1 mol.dm-3 &
    18,7 x 10-3 dm3 (18,7 cm3)check 
  • Use mole ratio: 1:1check 
  • Calculate n(NH3) / m(NH3) in
    250 cm3 : Substitute 0,25 dm3 (250 cm3)check
  • Substitute 0,022 dm3 (22 cm3)check 
  • Substitute 0,02 dm3 (20 cm3) to calculate mole/mass in the initial solutioncheck
  • Use 17 g·mol-1 in n = m/Mcheck 
  • Final answer: 18,06gcheck
  • Range: 17 to 19,13g.

7.2.4

 

Less than 7check 

\mathrm{NH}_4^{+}(\mathrm{aq})+\mathrm{H}_2\mathrm{O}(\ell)\rightleftharpoons\mathrm{NH}_3(\mathrm{aq})+\mathrm{H}_3\mathrm{O}^{+}(\mathrm{aq})checkcheck

light bulb Tips: 

  • When answering this question, some students get confused and incorrectly assume that if a titration is neutralized, the pH must be 7.
  • Consider a hydrolysis reaction, the salt produced is NH4Cℓ. In this case, NH4+ is a strong conjugate acid produced when NH3 acts as a weak base. Cℓ- is a weak conjugate base formed when HCℓ acts as a strong acid.
  • When the ammonium ion (NH4+) reacts with water, it donates a proton to form ammonia and hydronium ions.

3 marks

(3 x 1 mark)


Or

Option 2

n(HCl)=cV

=(0,1)\left(18,7\times10^{-3}\right) (1)

=1,87\times10^{-3}\mathrm{~mol}

\left(\mathrm{NH}_3\right)_{\text{reacted }}=\mathrm{n}(\mathrm{HCl})_{\text{reacted }}

=1,87\times10^{-3}\mathrm{~mol} (2)

\mathrm{n}\left(\mathrm{NH}_3\right)\text{ in }22\mathrm{~cm}^3=1,87\times10^{-3}\mathrm{~mol}

n=\frac{m}{M}

1,87\times10^{-3}=\frac{m}{17} (6)

\mathrm{m}\left(\mathrm{NH}_3\right)=3,72\times10^{-3}\mathrm{q}\text{ in }22\mathrm{~cm}^3

\mathrm{m}\left(\mathrm{NH}_3\right)\text{ in }250\mathrm{cm}^3=\frac{\left(3,72\times10^{-3}\right)(250)}{22} (3 + 4)

=0,361\mathrm{~g}

\mathrm{m}\left(\mathrm{NH}_3\right)\text{ in initial }20\mathrm{~cm}^3=0,361\mathrm{~g}

\mathrm{m}\left(\mathrm{NH}_3\right)\text{ in }1000\mathrm{cm}^3=\frac{(0,361)(1000)}{20} (5)

=18,06\mathrm{~g} (7)


Or

Option 3

\frac{c_{b}V_{b}}{c_{a}V_{a}}=\frac{n_{b}}{n_{a}}

\frac{c_{b}(22)}{(0,1)(18,7)}=\frac11 (1 + 2 + 4)

\mathrm{c}_1=0.085\mathrm{~mol}\cdot\mathrm{dm}^{-3}

\left[\mathrm{NH}_3\right]\text{ in }22\mathrm{~cm}^3=0,085\mathrm{~mol}\cdot\mathrm{dm}^{-3}

\left[\mathrm{NH}_3\right]\text{ in }250\mathrm{~cm}^3=0,085\mathrm{~mol}\cdot\mathrm{dm}^{-3}

\mathrm{C}_1\mathrm{~V}_1=\mathrm{C}_2\mathrm{~V}_2

c_1(0,02)=(0,085)(0,25) (3 + 5)

\mathrm{c}_1=1,06\mathrm{~mol}\cdot\mathrm{dm}^{-3}

\mathrm{m}=\mathrm{cVM}

=(1,06)(1)(17) (6)

=18,06\mathrm{~g} (7)


Or

Option 4

n(\mathrm{HCl})=\mathrm{cV}

=(0,1)\left(18,7\times10^{-3}\right) (1)

=1.87\times10^{-3}\mathrm{~mol}

\left(\mathrm{NH}_3\right)_{\text{reacted }}=\mathrm{n}(\mathrm{HCl})_{\text{reacted }}

=1,87\times10^{-3}\mathrm{~mol} (2)

\mathrm{n}\left(\mathrm{NH}_3\right)\text{ in }22\mathrm{~cm}^3=1,87\times10^{-3}\mathrm{~mol}

\mathrm{n}\left(\mathrm{NH}_3\right)\text{ in }250\mathrm{cm}^3=\frac{\left(1,87\times10^{-3}\right)(250)}{22} (3 + 4)

=0,021\mathrm{~mol}

c\left(20\mathrm{~cm}^3\right)=c\left(1\mathrm{dm}^3\right)

\frac{\mathrm{n}_1}{\mathrm{~V}_1}=\frac{\mathrm{n}_2}{\mathrm{~V}_2}

\mathrm{n}\left(\mathrm{NH}_3\right)\text{ in }1000\mathrm{~cm}^3=\frac{0,021\times1000}{20} (5)

=1,06\mathrm{~mol}

\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}

1,06=\frac{\mathrm{m}}{17} (6)

\mathrm{m}\left(\mathrm{NH}_3\right)=18,06\mathrm{~g} (7)

Related subjects & topics
Explore similar posts in our community